where a is the volume of ethanolic extract of the plant raw material, ml;

b is the volume of the ethanolic eluate from the column, ml;

C_{st} is the concentration of the standard solution, mg/ml;

 $D_{\boldsymbol{x}}$ and $D_{\boldsymbol{s}t}$ are the optical densities of the test and standard solutions, respectively;

m is the weight of the plant material, g; and

v is the amount of extract deposited on the plate, ml.

When standard amorphin is not available, the calculations can be carried out according to a well-known formula, using the specific absorption coefficient of amorphin ($E_{1Cm}^{10/6} = 242$).

The content of amorphin in ripe fruit of Amorpha fruticosa varied between 0.65 and 0.76%.

REFERENCES

- 1. E. S. Kondratenko, A. U. Kasymov, and N. K. Abubakirov, KhPS [Chemistry of Natural Compounds], 3, 307, 1967.
 - 2. R. Payfer, J. Ass. Agric. Chem., 37, 3, 630, 1954.

15 October 1958

Institute of the Chemistry of Plant Substances, AS UzSSR

UDC 547.972.2

RUTIN IN SOME SPECIES OF ONOBRYCHIS ADANS

I. I. Moniava and E. P. Kemertelidze

Khimiya Prirodnykh Soedinenii, Vol. 5, No. 3, pp. 178-179, 1969

In a study of the composition of 16 species of Onobrychis—sainfoin—growing in Georgia, it was shown that all the plants are rich in flavonoids.

The present paper gives the results of a study of those sainfoins which contain mainly rutin with only small amounts of other flavonoids.

To isolate the rutin, the raw material was extracted with 80% methanol. After the methanol had been driven off, the aqueous liquid was purified with chloroform, and left to crystallize [1]. The substance that separated out was recrystallized from methanol. In this way from Onobrychis cyri we isolated a flavonoid with mp $184-185^{\circ}$ C, $[\alpha]_{D}^{20}-37^{\circ}$ (c 1.4; pyridine); from O. iberica a flavonoid with mp $185-186^{\circ}$ C, $[\alpha]_{D}^{20}-37.9^{\circ}$ (c 1.4; pyridine); and from O. inermis a flavonoid with mp $183-184^{\circ}$ C, $[\alpha]_{D}^{20}-37.8^{\circ}$ (c 1.4; pyridine). After the hydrolysis of the flavonoids, in all cases only quercetin was obtained in an amount of approximately 50%. Rhamnose and glucose were found in the carbohydrate moiety.

Mixed melting points of the rutins isolated and their aglycones gave no depression of the melting points; they also had the same IR and UV spectra and $R_{\rm f}$ values as authentic samples of rutin and quercetin.

The amount of rutin was determined in nine species of sainfoin. For this purpose the extracts of the material investigated [2] were separated on a plate coated with polyamide [mobile phase methanol—ether—ethyl acetate (1:1:1)]. The rutin zone was separated and eluted, and the amount of rutin was determined on an SF-4A spectrophotometer at 258 mµ. The yield was calculated from a calibration curve for pure rutin. It was found that the content of rutin in O. cyri is 1.9%; in O. iberica, 2%; in O. inermis, 1.8% in O. daghestanica, 2.9%; in O. kluchorica, 2.3%; in O. transcaucasica, 1.52%; in O. altissima, 1.43%; in O. hamata, 1.48, and in O. kemularia, 1.8%.

REFERENCES

- 1. St. Stanev, Farmatsiya (Bulgaria), no. 4, 37, 1961.
- 2. T. T. Litvinova and A. S. Prozorovskii, Trudy 1-go Mosk. med. in-ta, 18, 115, 1962.

16 December 1968

Kutateladze Institute of Pharmacological Chemistry, AS Georgian SSR